Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131444, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588840

RESUMO

Ramie bone (RB), an agricultural waste generated in the textile industry, is a vastly productive renewable natural resource with the potential to be used as a source of cellulose. In this study, ramie bone cellulose (RB-CE) was obtained in one step using a simple and ecologically friendly hydrogen peroxide-citric acid (HPCA) treatment procedure that avoided the use of halogenated reagents and strong acids while also streamlining the treatment processes. Various analytical methods were used to investigate the chemical composition and structure, crystallinity, morphology, thermal properties, surface area and hydration properties of cellulose separated at different treatment temperatures. HPCA successfully removed lignin and hemicellulose from RB, according to chemical composition analysis and FTIR. RB-CE had a type I cellulose crystal structure, and the crystallinity improved with increasing treatment temperature, reaching 72.51 % for RB-CE90. The RB-CE showed good thermal stability with degradation temperatures ranging from 294.2 °C to 319.1 °C. Furthermore, RB-CE had a high water/oil binding capacity, with RB-CE90 having WHC and OBC of 9.68 g/g and 7.24 g/g, respectively. The current work serves as a model for the environmentally friendly and convenient extraction of cellulose from biomass, and the cellulose obtained can be employed in the field of food and composite materials.

2.
Int J Biol Macromol ; 255: 128123, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981275

RESUMO

Hydrogen peroxide combined with acid treatment demonstrates its respective characteristics for the separation of lignocellulosic biomass. Herein, holocellulose was extracted from Cattail leaves (CL) by a two-step treatment with alkali and hydrogen peroxide-acetic acid (HPAA). Then carboxylated nanocellulose was hydrolyzed with a mixed organic/inorganic acid. The chemical composition of the holocellulose and the physicochemical properties of the separated carboxylated nanocellulose were comparable. Carboxyl groups were introduced on the nanocellulose as a result of the esterification process with citric acid (CA), which endows the nanocellulose with high thermal stability (315-318 °C) and good light transmission (>80 %). Furthermore, morphological analyses revealed that nanocellulose had a spider-web-like structure with diameter between 5 and 20 nm.


Assuntos
Celulose , Typhaceae , Celulose/química , Peróxido de Hidrogênio
3.
Phytother Res ; 35(2): 1010-1022, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32914480

RESUMO

Rosmarinic acid (RA) is a water-soluble phenolic compound extracted from Boraginaceae and Lamiaceae. This study was designed to investigate the role and mechanism of action of RA in improving nonalcoholic fatty liver disease (NAFLD). Male SD rats maintained on a high fat diet and L02 cells stimulated with oleic acid were treated with RA. Our results showed that RA significantly reduced total cholesterol, triglycerides, low-density lipoprotein cholesterol, alanine aminotransferase, aspartate aminotransferase, and malondialdehyde levels and increased high-density lipoprotein cholesterol, superoxide dismutase and adenosine triphosphate levels both in vivo and in vitro. Hematoxylin and eosin staining and oil red O staining showed that RA had a good lipid-lowering effect and substantial protective effects on liver injury. Transmission electron microscopy and JC-1 fluorescence results showed that RA could improve mitochondrial damage in hepatocytes. Additionally, flow cytometry results indicated that RA inhibited ROS generation and apoptosis in L02 cells. The impaired hepatocytes were restored by using RA in NAFLD models characterized by down-regulating YAP1 and TAZ, meanwhile up-regulating PPARγ and PGC-1α. When YAP1 was over-expressed, RA reduced the expression of YAP1; however, the action of RA was significantly blocked by silencing YAP1. The experimental results indicated that RA markedly alleviated NAFLD by repairing mitochondrial damage and regulating the YAP1/TAZ-PPARγ/PGC-1α signaling pathway.


Assuntos
Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , PPAR gama/efeitos dos fármacos , Animais , Cinamatos/farmacologia , Depsídeos/farmacologia , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Transfecção
4.
Front Pharmacol ; 11: 153, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32184728

RESUMO

Inflammatory diseases are caused by abnormal immune responses and are characterized by an imbalance of inflammatory mediators and cells. In recent years, the anti-inflammatory activity of natural products has attracted wide attention. Rosmarinic acid (RosA) is a water-soluble phenolic compound that is an ester of caffeic acid and 3, 4-dihydroxyphenyl lactic acid. It is discovered in many plants, like those of the Boraginaceae and Lamiaceae families. RosA has a wide range of pharmacological effects, including anti-oxidative, anti-apoptotic, anti-tumorigenic, and anti-inflammatory effects. The anti-inflammatory effects of RosA have been revealed through in vitro and in vivo studies of various inflammatory diseases like arthritis, colitis, and atopic dermatitis. This article mainly describes the preclinical research of RosA on inflammatory diseases and depicts a small amount of clinical research data. The purpose of this review is to discuss the anti-inflammatory effects of RosA in inflammatory diseases and its underlying mechanism.

5.
Free Radic Res ; 53(2): 187-197, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30864863

RESUMO

Vascular calcification (VC) is a process in which calcium phosphate crystals deposit within the intima and middle membrane of the vascular wall. Rosmarinic acid (RA) is a common phenolic compound. It possesses antioxidation, anti-inflammatory, antimicrobial effects. Our experiment aims to investigate the role and molecular mechanism of RA in VC. Rats were fed high-fat feed and injected with vitamin D3 to establish a VC model. ß-Glyerophosphate (ß GP) was selected to stimulate rat aortic smooth muscle cells (VSMCs) in order to establish the cell calcification model. Kits were used to detect the antioxidant index and calcification index. RA significantly reduced the levels of ALP, MDA, Ca, and P but increased SOD levels. Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot analysis were used to detect various antioxidant-related genes and calcified genes on an mRNA and protein level. The results showed that nuclear factor red cell-2 related factors (Nrf2), haem oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase (NQO1), and osteoprotegerin (OPG) were up regulated by RA at both the mRNA and protein levels, but kelch-like ECH-associated protein 1 (Keap1), nuclear factor kappa B(NF-κB), cadherin associated protein (ß-catenin) and osteogenic transcription factor (Runx2) expression at both the mRNA and protein levels was significantly inhibited. Microscopic examination showed that RA significantly decreased the content of calcified nodules and the production of reactive oxygen species (ROS). When Nrf2 is disturbed, the role of RA is significantly blocked. Our results showed that RA can improve VC by regulating the Nrf2 pathway.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Cinamatos/uso terapêutico , Depsídeos/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Calcificação Vascular/tratamento farmacológico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Humanos , Masculino , Camundongos , Ratos Sprague-Dawley , Transdução de Sinais , Calcificação Vascular/patologia
6.
J Cell Physiol ; 234(10): 18131-18145, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30891776

RESUMO

Atherosclerosis (AS), a progressive disorder, is one of the tough challenges in the clinic. Scutellarin, an extract from Herba Erigerontis, is found to have oxygen-free radicals scavenging effects and antioxidant effects. In this study, we aimed to investigate the anti-AS effects of scutellarin is related to controlling the Hippo-FOXO3A and PI3K/AKT signal pathway. To establish an AS model, the rats in the scutellarin and model groups were intraperitoneally injected with vitamin D 3 and then fed a high-fat diet for 12 weeks. In addition, in vitro angiotensin II-induced apoptosis of human aortic endothelial cells (HAECs) were used to establish models. Scutellarin significantly reduced blood lipid levels and increased antioxidase levels in both models. Additionally, scutellarin inhibited reactive oxygen species generation and apoptosis in HAECs. The impaired vascular barrier function was restored by using scutellarin in AS rats and in HAECs cells characterized by inhibiting mammalian sterile-20-like kinases 1 (Mst1) phosphorylation, Yes-associated protein (YAP) phosphorylation, forkhead box O3A (FOXO3A) phosphorylation at serine 207, nuclear translocation of FOXO3A, and upregulating protein expression of AKT and FOXO3A phosphorylation at serine 253. Scutellarin significantly reduced Bcl-2 interacting mediator of cell death (Bim), caspase-3, APO-1, CD95 (Fas), and Bax: Bcl-2-associated X (Bax) levels and activated Bcl-2: B-cell lymphoma-2 (Bcl-2). Scutellarin also significantly inhibited the expression of Mst1, YAP, FOXO3A at the messenger RNA level. When Mst1 was overexpressed or phosphoinositide 3-kinases suppressed, the effects of scutellarin were significantly blocked. In conclusion, the results of the present study suggest that scutellarin exerts protective effects against AS by inhibiting endothelial cell injury and apoptosis by regulating the Hippo-FOXO3A and PI3K/AKT signal pathways.


Assuntos
Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Doenças da Aorta/prevenção & controle , Apigenina/farmacologia , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/prevenção & controle , Células Endoteliais/efeitos dos fármacos , Proteína Forkhead Box O3/metabolismo , Glucuronatos/farmacologia , Fator de Crescimento de Hepatócito/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Aorta/enzimologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Proteína Forkhead Box O3/genética , Fator de Crescimento de Hepatócito/genética , Humanos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Placa Aterosclerótica , Proteínas Proto-Oncogênicas/genética , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...